
Navigating Compliance in a
CoreOS World
Paul Querna | @pquerna
CTO, ScaleFT

May 10, 2016

Runs CoreOS

Has 200+ Page
Questionnaires

Fun! New! Not Fun! Old!

Many Standards for Many Purposes

https://www.microsoft.com/en-us/trustcenter/Compliance

● Controls (think: things to reduce
risk):
○ Policies / documentation
○ Technical

User Management on
CoreOS

User Management Controls

● Unique User IDs
● Role based Permissions
● Lifecycle Management

First Strategy

1. Put everything into cloud-config

Put everything into cloud-config

#cloud-config

users:
- name: paul.querna
 shell: /bin/bash
 groups:
 - sudo
 - docker
 sudo:
 - ALL=(ALL) NOPASSWD:ALL
 ssh-authorized-keys: [ssh-rsa AAAAB….
 pquerna@GraphiteModerated.local]

"cloud-init... there are a
number of hurdles..."

Alex Crawford
2015 CoreOS Fest

Hurdles

● Go code to generate YAML
○ Users, fetching keys from git
○ Inline script rendering
○ systemd unit files

● Reboots
○ Deleted user, comes back!

● Changes
○ Lifecycle of configurations (including users) != lifecycle of servers

Attempt Two

1. Put “bootstrap” script in cloud-config
(from zero today, try Ignition?)

2. Use Ansible for post-boot management

Bootstrap

#cloud-config

write_files:
- path: /opt/bin/bootstrap-cc.sh
 permissions: "0755"
 owner: root
 content: |-
 #!/bin/bash
 ...
coreos:
 units:
 - name: bootstrap-cc.service
 command: start
 content: |
 [Unit]
 Description=bootstrap runcmd
 [Service]
 Type=oneshot
 RemainAfterExit=yes
 ExecStart=/opt/bin/bootstrap-cc.sh

Ansible on CoreOS Linux

● Python…. Is not in the base system.
○ PyPy portable: github.com/squeaky-pl/portable-pypy
○ ln -s bin/pypy /opt/bin/python

○ Tell ansible where python is:
[coreos:vars]

ansible_python_interpreter="/opt/bin/python"

● Ansible basically* works!
○ Shell, Users, File

● Future: rkt fly?

Agents on CoreOS

First Strategy

1. Docker in systemd ● Namespaces
● Mounting the universe
● Systemd integration (lack of)

Outside of containers

1. Ansible: untar into /opt
2. Ansible: creates systemd unit file

● Great for Go & self contained things

Round 3: rkt (fly)

● Tried 12 months ago for all uses: Pain
● Tried 60 days ago w/ fly stage1: Yay!

acbuild: pretty easy?

Start the build with an empty ACI
acbuild --debug begin

Name the ACI
acbuild --debug set-name scaleft.com/sftd

Copy the app to the ACI
acbuild --debug copy "${INPUT_SFTD}" /scaleft/bin/sftd

Set correct file permissions and owner
chmod 0755 .acbuild/currentaci/rootfs/scaleft/bin/sftd
chown 0:0 .acbuild/currentaci/rootfs/scaleft/bin/sftd

Run sftd
acbuild --debug set-exec -- /scaleft/bin/sftd

for m in ${MOUNT_DIRS}; do
 acbuild mount add "${m}" "/${m}"
done

acbuild --debug write --overwrite "${OUTPUT_FILE}"

User Management: Via Agent

● Dogfooding our own Agent
● ScaleFT Server Daemon manages users
● Runs via rkt fly and a systemd unit
● www.scaleft.com/docs/sftd-coreos

Logs on CoreOS

Log Controls

● User identification (see User Management)
● Action
● Timestamp
● Prevent modification
● Ship to central server

Log Management

- systemd-journald: yay
- This is mostly about journal vs classic syslog
- More systemd journal integrations happening every day

First Strategy

1. journalctl -o json
2. shell script to upload to s3

Round 2: In progress

● journalbeat in rkt fly:
○ Pulls from journal using CGO bindings
○ Cursor integration
○ github.com/mheese/journalbeat

● ACI build:
○ github.com/authclub/journalbeat-aci

Updates on CoreOS

Updates Controls

● Change control / documented approval procedures
● If Anti-virus, auto-updates: +1
● If not: Anti-virus: ?

Auto Updates

Here’s how you turn off CoreOS Linux’s original feature:

echo REBOOT_STRATEGY=off | sudo tee -a /etc/coreos/update.conf

See also:

update_engine_client -status

update_engine_client -update

CoreUpdate by CoreOS

Thanks!

@pquerna
paul@scaleft.com

paul.querna.org/slides

